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Abstract 

A smooth test of the Poisson assumption in the Poisson regression generalised linear model is derived. 
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1. Introduction 

The smooth tests in Rayner et al. (2009) assume 
observations are independent and identically 
distributed. For example, section 2 here recalls the 
smooth test for the Poisson distribution. In section 
3 we describe the Poisson regression model where 
observations are not independent and identically 
distributed. The smooth test for the Poisson 
assumption is outlined; details are given in the 
Appendix. Similarities and differences in the two 
tests are discussed in section 4. 

We note that the smooth test derived here can be 
extended to generalised linear models in general. 
See Pena and Slate (2006) who consider smooth 
testing in making a global assessment of the 
assumptions for the linear model. 

2. Testing the Poisson Assumption for independent 
and identically distributed observations 

In deriving their smooth tests that data are 
consistent with a specified probability density 
function, Rayner et al. (2009) assume a random 
sample Yt. ... , Yn and nest the probability density 
function in a smooth alternative. When the null 
distribution is Poisson with positive mean f..i, the 
probability density function is, for y = 0, 1, ... , 
fly; Jt) = exp(-Jt)j.//y!. A smooth alternative of 
order k is 
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in which a = ( B,) and qa, Jt) is a normalising 
constant that is assumed to exist and satisfies 

Here {h;(y; Jl)} is the set of Poisson-Charlier 
polynomials; see Rayner et al. (2009, p.l55). The 
first three polynomials are h0(y; Jt) = 1, h1(y; Jt) = 
(y- Jt)I..JJl and h2(y; Jt) = {(y- Jt)2

- y}/..J(2;}). We 
seek to assess the Poisson assumption by testing H: 
a = 0 against K: a f. 0 using the score test for this 
model. 

With the model as given, the score test statistic is 
found to have singular covariance matrix. One 
solution is to remove B1h1(y; Jt) from the smooth 
alternative. It seems that B1 and Jl are fulfilling the 
same role in the model, and if both are included 
one is redundant. If the new order k smooth 
alternative includes Bz to ek+l then the order k score 
test statistic is 

kB n 

LV/ where V; = L h; (Y1 ; jJ )1 .[;; 
i=2 j=l 
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in which 11 is the maximum likelihood estimator 

of 11· 

3. A Smooth Test For Poisson Regression 

According to Dobson (2002, p.152) the Poisson 
regression model is defined when Y1, ••• , Yn are 
independent Poisson (J.i:J) random variables with 

E[~] = J.l:J· = exp( x~p) in which x1 = (x1" •.. , x1p)r,j 

= 1 , . . . , n, are p x 1 vectors of constants and I} = 

(/31, ... , f3Pl is a p x 1 vector of nuisance 
parameters. Dobson (2002, p.152) includes an 
offset term, but here this term will be absorbed into 
J.l:i· To confirm the model a smooth alternative 
likelihood L is constructed: 

L = {J c(o,pJex~tli,h,{v1 ;pJ}J{v1 ;pJ 

= {Q c(o,pJ}exp{to, t.h,(y1;pJ}, 

exp{- i 111 }{fr .u?} !{IT Y )} 
;=I ;=I ;=I 

in which, as before, { h;(y; fl.)} is the set of Poisson­
Charlier polynomials and C(9, fl.) is a normalising 
constant that is assumed to exist. When 9 = 0, L is 
the likelihood of the Poisson regression model. 

To derive the score test statistic, derivatives to 
second order of the logarithm of the likelihood are 
required, and these in tum require derivatives to 
second order of C(9, J.i:J). These can be found by 
differentiating equation (1). The details are given 

in the Appendix. Define Vu = ih)y1 ;11;}i...Jn. 
J=l 

Henceforth parameters estimated under the null 
hypothesis have a zero subscript. Now under H: 9= 
0, 

ologL .I --=--- = Vu"'n for u = 1, ... , k, and 
()(}u 

0 
log L =- t {y

1 
-110Jx

1
s for s = 1, ... ,p. 

of3s J=l 

The nuisance parameters are found by solving 
ologL/ of3 = 0. Dobson (2002, section 4.3, 

pp.62) described finding the ML estimates using 
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the method of scoring. From Dobson (2002, 4.19) 
the information matrix is found to be 

(if101 x
1
sx

1
,) = XTDX where X = (x1,). This is 

j=) 

consistent with our subsequent results. Having 

estimated I} in this way ~ 0 can be determined from 

log fl.J = x~ Po for all j. These estimators are 

needed, for example, to calculate the Vu. 
We now write D = diag(Jlo" ... , fl.on), lk is the k x 

k identity matrix, ln for the n x 1 vector of 1 s and I} 
= (/3" ... , f3Pl . The partitioned information matrix 

has blocks lee, lap. lpe = l~p and lpp, given by 

The asymptotic covariance matrix is ~ = lee -

leplp~IJl9 . In the resulting lepi~IJl9 , only the (1, 

1 )th term will be non-zero. It follows that 

All off-diagonal elements of ~ are zero, and all 
remaining diagonal elements are n. The score test 
statistic is thus 

in which all parameters are estimated by maximum 
likelihood. The matrix DY'X(Xrnxr1xr DY' that 
appears in (~)u is the familiar leverage matrix for 
this model; see Dean and Lawless ( 1989) and the 
references therein. Note that Dean and Lawless 
(1989) discuss tests for extra-Poisson variation 

including one based on V2
2 

• 

Under the null hypothesis the smooth test statistic 

has the xi distribution with k degrees of freedom. 

This is the number of parameters in the full model, 
k ((}" ... , Bk) + p (/3~, ... , {3p), minus the number of 
parameters in the null model, p (/3" ... , /3p). At first 
glance this seems a little surprising: no matter how 
many parameters flJ are used to specify the 
structure of the model, the degrees of freedom of 
the test that assesses the model remain the same. 

4. Discussion 
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The essential difference between the smooth tests 
for the independent and identically distributed and 
Poisson regression models is that although both 
include a sum of squares of components from the 
second on, for the Poisson regression model a term 

involving v;z is included, while the test for the 
independent and identically distributed model does 
not. 

Rayner et al. (2009, section 9.2) show that for the 
independent and identically distributed model in 
testing for a distribution in an exponential family a 
smooth test statistic that is a sum of squares can 
readily be constructed. However in the Poisson 
regression model it is not possible to express the 
likelihood in the form of an exponential family. 
Nevertheless in an intuitive sense the V2

2 + ... + 
V/ part of the test statistic in Poisson regression is 

a carryover from the independent and identically 
distributed assessment. 

Outside of exponential families the score test 
statistic is very occasionally a weighted sum of 
squares of components, as for the Laplace and 
logistic distributions (see Rayner et al, 2009, 
sections 11.2 and 11.3). It is more usually a 
quadratic form that allows no simplification. So 
here the weighted first component is not dissimilar 
to what happens for the Laplace and logistic 
distributions. 

In the independent and identically distributed 
model there is only one location parameter. This is 
estimated by maximum likelihood, which in 
exponential families is equivalent to method of 
moments estimation, and for the Poisson model 
that means V1 is identically zero. Since V1 is 
degenerate its variance and covariances with the 
other V, are all zero. This is why the asymptotic 
covariance matrix is singular and it doesn't make 
sense to include a (}1 term in the smooth model. 

Now in the Poisson regression case there are p ps 
to be estimated. If p = 1 and this is the offset term, 
then the model reduces to the independent and 
identically distributed model. With p 2: 2 the 
likelihood equations neither include nor imply V1 = 
0. In fact the V1 term may be thought of as 

assessing the ability of the link J.l-J = exp( x~~p) to 

model location. 
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Appendix 
Since the smooth alternative distribution has a 

proper probability (mass) function 

Differentiating both sides of (2) with respect to Bu 
and p, gives, ultimately, 

8logC 
_ __.:::::_ =- E[hu(Y; J.J)], u = 1, ... , k, (3) 

aeu 

and 

81ogC 

a[J. 
=- ±e;E[ah;(Y;,u1 )] _ E[alogf]. 

1=1 a{Js 8[3, 
s=1, ... ,p. (4) 

Henceforth we write C1 = C( (}, f.l:J) for j = 1, ... , n 
and note that 8J.1-/8fi., = J.l-J x1.,. Differentiating the 
logarithm of the likelihood gives, for u = 1, ... , k 
and s = 1, ... ,p 

a log L = ~ 8logCi + f- '- . ) 
L..J ~ hu \Yi, ,u1 , and aeu J=l aeu j=l 

81og L = :t 8logCi 

a fJ. i=' a /3, 
~ f- ah;(y1;,u1 ) f-.'- __ \ __ 

+ ~~~ + ~\Yj J.l-i~ft" 
i=l j=l a /3, j=l 

On using (3) and ( 4) we have 
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Recall that Vu = 'fh)y1;,uJ!...Jn. Under H: 9 = 0, 
j=i 

since the orthonormality implies E0[hu] = 0 and 
Eo[Jj] = J..i;, 

olog L ---=--- = Vu...Jn for u = 1, ... , k, and 
aeu 

ologL = f{y
1
-,u

01
}x

1
s fors=l, ... ,p. 

of3s J=l 

To find the asymptotic covariance matrix we need 
second order derivatives of log L which in turn 
require the second order derivatives log ~· We 
find, for u, v = 1, ... , k, 

and for u = 1, ... , k, s = 1, ... , p 

The remaining second order derivatives involve 
factors that simplify when 9 = 0, so they will only 
be given under this constraint. Again the details are 
omitted. When () = 0, 

82logC 
aeuaev = 8uv, for u, v = 1, ... , k, 

_ 8
2

log C = E [ ohu] + _.!._ o,u E [h (Y _ )] 
ae 8{3 ° an ap 0 u ,u ' 

u s 1-'s ,U s 

for u = 1, ... , k, s = 1, ... , p, and 

82logC 
----"'-- = 0, for s, t = 1, ... ,p. 
ap,ap, 
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On differentiating the first order derivatives of log 
L and using previous results we obtain when 9 = 0 

o2logL = :t82logCi =-n8uv.u,v=l, ... , 
aeu aev j=l aeuaev 

k, 

8
2

log L = :t o
2
logC1 + f ohu 

aeuap, J=l aeuap, J=i 8/3, 

~ t.{:~ -E[:~]}- t,x,E[h.(Y1 -!'1)]+ 
terms that are zero when 9 = 0, 
foru= 1, ... , k,s = 1, ... ,p, 

and, for s, t= 1, ... ,p, 

n 

=- "",u x
15

x 
1 
+ terms that are zero when 9 = 0. L.. J J 

J=i 

To derive the information matrix we finally take 
minus the expectation under 9 = 0 of these second 
order derivatives. We find 

n 

LXJsEo[hA~ = 01u (XTDY,ln)., 
J=i 

for u = 1, ... , k, s = 1, ... , p, and 

This leads to the stated blocks of the partitioned 
information matrix. 
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